Extensions 1→N→G→Q→1 with N=C54 and Q=C23

Direct product G=N×Q with N=C54 and Q=C23
dρLabelID
C23×C54432C2^3xC54432,228

Semidirect products G=N:Q with N=C54 and Q=C23
extensionφ:Q→Aut NdρLabelID
C54⋊C23 = C23×D27φ: C23/C22C2 ⊆ Aut C54216C54:C2^3432,227

Non-split extensions G=N.Q with N=C54 and Q=C23
extensionφ:Q→Aut NdρLabelID
C54.1C23 = C2×Dic54φ: C23/C22C2 ⊆ Aut C54432C54.1C2^3432,43
C54.2C23 = C2×C4×D27φ: C23/C22C2 ⊆ Aut C54216C54.2C2^3432,44
C54.3C23 = C2×D108φ: C23/C22C2 ⊆ Aut C54216C54.3C2^3432,45
C54.4C23 = D1085C2φ: C23/C22C2 ⊆ Aut C542162C54.4C2^3432,46
C54.5C23 = D4×D27φ: C23/C22C2 ⊆ Aut C541084+C54.5C2^3432,47
C54.6C23 = D42D27φ: C23/C22C2 ⊆ Aut C542164-C54.6C2^3432,48
C54.7C23 = Q8×D27φ: C23/C22C2 ⊆ Aut C542164-C54.7C2^3432,49
C54.8C23 = Q83D27φ: C23/C22C2 ⊆ Aut C542164+C54.8C2^3432,50
C54.9C23 = C22×Dic27φ: C23/C22C2 ⊆ Aut C54432C54.9C2^3432,51
C54.10C23 = C2×C27⋊D4φ: C23/C22C2 ⊆ Aut C54216C54.10C2^3432,52
C54.11C23 = D4×C54central extension (φ=1)216C54.11C2^3432,54
C54.12C23 = Q8×C54central extension (φ=1)432C54.12C2^3432,55
C54.13C23 = C4○D4×C27central extension (φ=1)2162C54.13C2^3432,56

׿
×
𝔽